Skip to main content

Erratum to: Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia

The Original Article was published on 01 September 2014

Correction

After publication of this Research Article[1], we noticed we had included an incorrect image in Figure 1D in the panel for LiAcAc 20 mM. A corrected Figure 1 is included here.

Figure 1
figure 1

Ketone bodies inhibit growth and induce apoptosis in pancreatic cancer cell lines. Capan1 (A) and S2-013 (B) cells were treated with different concentrations of sodium-3-hydroxybutyrate (NaHB) and lithium acetoacetate (LiAcAc) for 72 h, and cell viability was determined by MTT assay. Bar represents percent viability under indicated treatments relative to treatment with solvent control. Representative bright-field images of Capan1 (C) and S2-013 (D) cells under treatment with 10- and 20-mM concentrations of NaHB and LiAcAc for 72 h. (E) Multiple pancreatic cancer cell lines were treated with 10- and 20-mM concentrations of NaHB and LiAcAc for 72 h, and relative cell viability determined by MTT assay is plotted in the bar charts. (F) Capan1 and S2-013 cells treated with 10- and 20-mM concentrations of sodium-3-hydroxybutyrate and lithium acetoacetate for 48 h and the relative caspase 3/7 activity are plotted. Values represented are mean ± SEM. *P<0.05; **P<0.01.

References

  1. Shukla SK, Gebregiworgis T, Purohit V, Chaika NV, Gunda V, Radhakrishnan P, Mehla K, Pipinos II, Powers R, Yu F, Singh PK: Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia. Canc Metabol. 2014, 2: 18-10.1186/2049-3002-2-18.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj K Singh.

Additional information

The online version of the original article can be found at 10.1186/2049-3002-2-18

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.

Authors’ original file for figure 1

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

The Creative Commons Public Domain Dedication waiver (https://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, S.K., Gebregiworgis, T., Purohit, V. et al. Erratum to: Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia. Cancer Metab 2, 23 (2014). https://doi.org/10.1186/2049-3002-2-22

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/2049-3002-2-22

Keywords